
CALCULATION OF TEMPERATURE FIELDS IN DOMAINS WITH PIECEWISE- 

HOMOGENEOUS MEDIA JOINED ALONG A NON-CANONICAL BOUNDARY 
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An analytical method is developed for the solution of linear problems of sta- 
tionary heat conduction in domains with piecewise-homogeneous media joined along 
a non-canonical boundary. The method is based on the addition of non-canonical 
contours to contours described in the framework of classical systems of coor- 
dinates. 

The use of various modifications of the method of partial domains to solve problems of 
stationary heat conduction assumes that a boundary joining mixed subdomains is canonical [i]. 
In the present paper we present an approximate analytical method that allows us to remove 
this condition. 

With no loss of generality in our discussion, we consider the essence of our method 
through an example. 

Assumethat it is necessary to solve Laplace's equation in a domain consisting of a 
set of two bodies in contact (Fig. i): 

v Z T i = 0 ,  i =  1, 2, 

and to satisfy the boundary conditions 

(1) 

Tllu=o---- 0, (2 )  

OT~ox Ix=o=O' i---- 1, 2, (3) 

( or  = o ,  1, 2, 

T2[u=b ---- To, (5)  

( r~  - -  r.~)lr = o,  ( 6 )  

E~( OT1 cos(~i)_l_.0T~ sin(J3)) __=;~e( OT,, aT,,. )I , - cos (~) -t- ,, sin (1~) , 
Ox 09 r Ox Og r ( 7 ) 

where F is the boundary of adjoining subdomains, defined by the equation 

dj-c  d--c ( @ ) , x C [ 0 ,  a]; ~ -- COS X 
Y 2 + 2 

is the angle between the normal to the junction boundary and the ox-axis, defined in the 
given case by the relationship [2]: 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 58, No. 4, pp. 689-693, April, 
1990. Original article submitted November 15, 1988. 

532 0022-0841/90/5804-0532512.50 �9 1990 Plenum Publishing Corporation 



~7 

, ; .  // , /2.// . ' t  
~'g ;///,,r 

0 u .,~ 

jr0 -2 

3 5"00 

2 ~ 4 , 0 0  

300 

2O0 
/ -  

too 

Fig. 1 Fig. 2 

Fig. i. Form of computational domains: i) non-canon- 
ical boundary joining subdomains I and II; 2) boundary 
of subdomain I constructed to canonical form; 3) boun- 
dary of subdomain II constructed to canonical form; 
a, b, c, d, E, h) coordinates of nodes of corresponding 
subdomains. 

Fig. 2. Temperature distribution in computational 
domain. 

= ~ ~) = ~ -- arctg I = sin x 
2 

To s o l v e  p rob l em ( 1 ) - ( 7 ) ,  as  a p r e l i m i n a r y  we c o n s t r u c t  a c o n t o u r  bound ing  subdomains  
t o  c a n o n i c a l  form.  Subdomain 1 i s  bounded by t h e  s e t  o f  i n t e r v a l s :  y = 0, x e [ 0 ,  ~ ] ;  y = h,  
x = [0 ,  a ] ;  x = 0, y e [ 0 ,  h ] ;  x = a ,  yE[0 ,  h ] .  Subdomain 2 i s  bounded by t h e  s e t  o f  i n t e r v a l s :  
y = ~, x e [ 0 ,  a ] ;  y = b,  x e [ 0 ,  a ] ;  x = 0, y e [ ~ ,  b ] ;  x = a ,  y e [ ~ ,  b ] .  

On t h e  added  p o r t i o n s  o f  t h e  c o n t o u r s  (y  = h and y = t )  we i n t r o d u c e  t h e  a u x i l i a r y  
b o u n d a r y  c o n d i t i o n s  

ay ~=~ oh, xE ( ] - -  I) ~4 , ]a /M.  , 1 = ] ,  2, ..., M, ( 8 )  

a ]a,'M) 1 = 1 ,  2 . . . .  M. 
ay l,j=z , (9) 

In the expanded domain 1 we seek a solution of Lap!ace's equation with boundary con- 
ditions (3) x = 0, yE[0, h], boundary conditions (4) on the boundary x = a, y~[0, h] boundary 
condition (2) on the boundary y = 0, x~[0, a] and boundary condition (8) on the bo~mdary y = 
h, xr a]. 

The solution of the first auxiliary problem constructed by the method of separation of 
variables [3] has the form 

T~ (x, U, q ,  i = 1, .'2, .. M) = '~" ,1:: sh (o~;;p) cos (o~#), 
k = l  

(io) 
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where 

J t , a ) 

AIr  
(2a~% -1- sin (2oJka)) 3~1 ch (c%h) 

mk are the roots of the transcendental equation tg(mka)=al/(~l~A). 

In the expanded domain 2 we use the method of separation of variables to solve Laplace's 
equation with the boundary conditions (3) on the boundary x = O, ye[s hi, and condition (9) 
on boundary y = s xe[O, a], condition (5) on boundary y = b, xe[O, a]: 

T,, (x, y, h, i =  1, 2 . . . . .  M) = i (Bk ch (~,~ ( y -  I))+ 
k = l  

+ C~ sh (~h (b - -  y))) cos (~7~x), 

(11) 

where 

Bh = 4To sin (~ha) . 
( 2 a ~  -+- sin (2,u;~a)) ~ ch ( ~  (b -- l)) 

VI~ v~, f~ cos (2i - -  1) Vh 

C h =  
(2avh @ sin (29~a)) ;~= ch (,ah (b - -  l)) 

gk are the roots of the transcendental equation 

(12) 

tg (~ka) = ae (13) 
L4th 

Since the value of the temperature at the i-th point belonging to the junction boundary 
of the subdomains can be found from the solution of the field problem, both for the Ist and 
for the 2nd subdomain, we can write 

where, in accordance with [3], 

M (14) 
~.~ (anq j -  b u f f ) =  F~, i =  1, 2 . . . . .  M,  
1=1 

dH_eH_d__ c ( ~ ) 
- -  - -  COS ' - -  X~ , a u = = T 1  x~, Y~ 2 2 \ a 

q~ . . . . .  qJ-~ = qs+~ . . . . .  qM = 0, qj = 1) , 

( d + c + d - - C c ~  ' b u =  T.. x~, y~-- 2 - -2- -  , a , 

To = 0, fl ..... fJ-1 =-= fJ+1 ..... fM = 0, fj = I) , 

d - ~ - c  6 - - c o s  -x i , f j =  0, ]== 1, 2, ..., M . F i = T =  x,, ~ ' i=  2 2 

The system of equations (14) replaces, in what follows, the boundary condition (6). To 
use boundary condition (7) we must first determine the components of the thermal flow density 
vector at nodes of the collocation by a direct differentiation of expressions (i0) and (ii) 
with respect to x and y: 
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OT~ l 
Ox {r 

= -  <~ A~*)~,sh(oJtFi)sin(oo,r i =  1, M ,  
k = l  

07"1 I = "~ "~ A~o)7~ ch @, ,J3  cos  (o~,~x~), i = t, .,,, M ,  
Og r ~=~ 

(15) 

( 1 6 )  

~  = _ {~ ~,,, ( G  ch (v< (v, - -  O) + G sh (t*~ (b - -  V,))) s in  ( ~ x 3 ,  
OX F k = l  

(17) 

OV = ~ ~*~' (Bh sh (~7: (Y~ - -  0)  - -  G,~ ch ([*h (b - -  W))) cos  0*~x3. 
h =  I 

(18) 

Using the principle of superposition of thermal fields, valid also for thermal flows, 
we can write 

where 

OT~ ] ~ OT.21 M 
= ~ Cuq, ~ = "9 PJ~ + ~ (xi, W), 

OX (xl,Yi) ]= 1 OX [(xi,tJi ) t ' = l  

M OT~ M 
d,jq, ,  =- s w ,  + y,),  i - -  1, 2 . . . . .  M,  

Oy (xi,vD i=1 Oy (x,,vi) /=l  

( 1 9 )  

__(OT1 d + c  [_d--c " t (  ~___ 
C ~ j =  &,  W -  - - c o s ~  & , 

Ox 2 2 \ a / 

q~ . . . .  - -  q~-~ = q~+~ . . . . . .  qM : :  O, qj = t )  ; 

: - -  x~, t/z== ~ COS X~ 
OF 2 2 

/ 

-~" - -  Xi,  ,.6'i ~ - - T  - C O S  Xr , 
Ox 2 2 

To = 0, h - -  �9 . . . .  fJ-~ = U~-~ . . . . .  {M = 0, h = 1) ; 

&, b'i = -- q- cos 
Oy 2 2 a / 

To = 0, h . . . . .  /r = fj+~ . . . . .  ]"~ = 0, h = I ) ; 

b = 0 , . / = l ,  2 . . . . .  M )  

Rx2 (&, ldi) OT~ ( d 4- c d --  c ( vz ) 
= " .Vi, t l i  = ~7 - -  COS ~ X ~  

Og 2 2 a 

h ==: o, ] = 1, 2 . . . . .  ~ : ~ .  
1 
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Substituting formulas (19) into relation (7), we obtain 

M 

l~1 (Cij cos (13i) + dij sin ([8i)) qi - -  s (Pi ;  cos (~)  q- S, j  sin (l~i)) ]:i] = 
1=1 

= ~ [~ (xi ,  y , )  c o s  ( ~ )  § ~t'2 (x~, y~) sin (~)1, i = 1, 2, . . . ,  M. 

(20) 

The set of equations (14) and (20) forms a system of linear algebraic equations in the 
unknowns qi and fi" Solution of this system by the method of Gauss [4] makes it possible to 
find qi and fi, the substitution of which into formulas (i0) and (ii) yields an approximate 
analytical solution of the initial problem (i)-(7). 

We solved this problem on the EC-I045 computer for the following values of the param- 
eters: a = 10 -2 m, b = 3"10 -2 m, d = 2.5"10 -2 m, C = 1.5.10 -2 m, h = 2.7.10 -2 m, 

s = 1.3.10 -= m, kl = 400 W/(m.deg), i= = i00 w/(m.deg), ~i = 800 W/(cm2.deg), ~2 = i00 
W/(cm2.deg), M = i0, T o = 500~ Results of the calculation for the system temperature field 
are shown in Fig. 2. 

The approximate analytical solution obtained for the problem satisfies Laplace's equation 
exactly in domains 1 and 2, as well as the boundary conditions on the exterior contour. On 
the boundary where the solutions are spliced together boundary conditions of the fourth kind 
are satisfied at i0 points of the collocation. The time to calculate temperatures at 400 
points of the domain takes about one minute of machine time. 

A comparison of the temperature calculated by the proposed method with the exact anal- 
ytical solution for the case where the junction boundary is the line y = (d + c)/2, shows 
that the relative error in the calculated temperature is at most 1%. 

NOTATION 

11, 12, thermal conductivity coefficients; ~l, ~2, heat emission coefficients; T I, T 2, 
temperature distribution functions; 2M, number of "auxiliary" sources qi and fi on the added 
boundaries. 
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